Des petits réacteurs nucléaires pour la production d'hydrogéne

Modérateurs : Rod, Modérateurs

Avatar de l’utilisateur
energy_isere
Modérateur
Modérateur
Messages : 89530
Inscription : 24 avr. 2005, 21:26
Localisation : Les JO de 68, c'était la
Contact :

Des petits réacteurs nucléaires pour la production d'hydrogéne

Message par energy_isere » 22 avr. 2023, 10:59

Nouveau fil pour un sujet amené à se développer d'ici 2030.
The role of nuclear power

Nuclear power already produces electricity as a major energy carrier with well-known applications. Operating at very high capacity factors, nuclear energy is well placed to produce zero-carbon hydrogen as an emerging energy carrier with a wide range of applications. The evolution of nuclear energy's role in hydrogen production over perhaps two decades is seen to be:

Cold electrolysis of water, using off-peak capacity (needs 50-55 kWh/kg).

Low-temperature steam electrolysis, using heat and electricity from nuclear reactors.

High-temperature steam electrolysis, using heat and electricity from nuclear reactors.

High-temperature thermochemical production using nuclear heat.


In addition, nuclear heat can assist the process which provides most of the world's hydrogen today:

Use of nuclear heat to assist steam reforming of natural gas (methane).
Steam reforming of methane (SMR) requires temperatures of over 700 °C to combine methane and steam to produce hydrogen and carbon monoxide. A nuclear heat source would reduce natural gas consumption by about 30% (i.e. that portion of feed which would simply be for heat), and eliminate flue gas CO2 emissions.

Starting with electrolysis, the efficiency of the whole process (primary heat to hydrogen) moves from about 25% with today's reactors driving electrolysis (33% for reactor x 75% for cell) to 36% with more efficient reactors doing so, to 45% for high-temperature electrolysis of steam, to about 50% or more with direct thermochemical production.

Electrolysis at ambient temperature is being undertaken in at least four US projects at nuclear power plants and is planned for the Kola plant in Russia from 2023. Alkaline and proton exchange membrane (PEM) technology is employed. In August 2021 Nel Hydrogen was contracted to build a 1.25 MW PEM electrolyser at Exelon’s Nine Mile Point nuclear power plant to show integrated production, storage and normal use at the plant.

Low-temperature steam electrolysis improves the efficiency of electrolysis at ambient temperatures and utilizes waste heat at up to 200 °C from a conventional reactor. The US Department of Energy in October 2020 selected two projects to advance flexible operation of light water reactors with integrated hydrogen production systems to receive cost-shared funding. Two other projects are already under way.

The IEA’s Global Hydrogen Review 2021 described about a dozen projects that are intended to use electricity from nuclear power plants to produce hydrogen using electrolysis. Most of these projects are based in Canada, China, Russia, the USA and the UK. However, only a few of these were actually launched.

High-temperature steam electrolysis (HTSE, at 550-750 °C or more) in solid oxide electrolysis cells (SOEC) to use both heat and electricity has been demonstrated, and shows considerable promise. It is a reverse reaction of the solid oxide fuel cell technology. It requires about one-third less energy than low-temperature electrolysis but has not yet been commercialized due to the poor durability of the ceramic components in a hot hydrogen environment. US research is at Idaho National Laboratory in conjunction with Ceramatec and FuelCell Energy in a $12.5 million project part-funded by the US Department of Energy (DOE). LucidCatalyst shows it producing hydrogen at two-thirds the cost of low-temperature electrolysis across a range of capacity factors. One of the four DOE projects mentioned above will focus on a solid oxide electrolysis cell at high temperature. Idaho National Laboratory will work with Xcel Energy to demonstrate HTSE technology using heat and electricity from one of Xcel Energy’s nuclear plants.

The International Atomic Energy Agency (IAEA) has developed the Hydrogen Economic Evaluation Program (HEEP) to assess the economics of large-scale hydrogen production using nuclear energy.

Nuclear hybrid energy systems for hydrogen production

Image

.........................
https://www.world-nuclear.org/informati ... -uses.aspx

Avatar de l’utilisateur
energy_isere
Modérateur
Modérateur
Messages : 89530
Inscription : 24 avr. 2005, 21:26
Localisation : Les JO de 68, c'était la
Contact :

Re: Des petits réacteurs nucléaires pour la production d'hydrogéne

Message par energy_isere » 22 avr. 2023, 11:01

US-Korean partners to build SMR-powered hydrogen production facility
Ultra Safe Nuclear Corporation (USNC) of the USA has signed a memorandum of understanding (MoU) with South Korea's Hyundai Engineering and SK E&C to conduct joint research and development for the commercialisation of Hydrogen Micro Hubs over the next five years.


21 April 2023

The Hydrogen Micro Hub is a facility that produces hydrogen by applying a high-temperature electrolysis process of solid oxide electrolysis cells (SOEC) to the electricity and high-temperature steam generated by USNC's Micro-Modular Reactor (MMR). USNC said that, compared with commercial pressurised water reactors, this technology can generate relatively high-temperature steam, enabling the use of SOEC operating at high temperatures, which can maximise hydrogen production efficiency with less energy.

The three companies plan to construct the first Hydrogen Micro Hub at SK E&C's headquarters in Seoul. Under the agreement, they will jointly conduct research and development on the MMR-SOEC integrated plant for the next five years. Through this, they plan to examine the establishment of a competitive hydrogen production system, and promote continuous research and development and verification for future hydrogen production and supply businesses.

Hyundai Engineering will oversee the MMR-related balance of plant and engineering, procurement and construction activities, while USNC will be responsible for the design, manufacturing and supply of the MMR. SK E&C will establish a nuclear power-based hydrogen production system using Bloom Energy's SOEC and supply hydrogen production equipment.

Image
The MMR design (Image: USNC)

SK E&S has already successfully tested hydrogen production through electrolysis using a 130 kW-scale SOEC facility located at the Bloom SK Fuel Cell manufacturing plant in Gumi, in South Korea's North Gyeongsang province, in cooperation with Bloom Energy and Bloom SK Fuel Cell. In addition to the Hydrogen Micro Hub cooperation, SK E&S is diversifying its "zero carbon emission hydrogen production model" to include pink hydrogen, which is produced by electrolysing water using electricity from nuclear power generation.

"We have signed a three-party agreement to develop an environmentally friendly business that economically produces and supplies hydrogen by combining MMR and SOEC technologies," said Hyundai Engineering CEO Hong Hyun-seong.

SK E&S CEO Park Kyung-il added: "SOEC is a good partner that can take advantage of MMR's advantages by operating at high temperatures and producing high-efficiency hydrogen with minimal energy consumption."

"The Hydrogen Micro Hub is an efficient and economical hydrogen production plant that can produce hydrogen on a scale required at the local site," said USNC CEO Francesco Venneri. "The three companies - SK E&S, Hyundai Engineering, and USNC - will contribute to the efficient establishment of a hydrogen economy based on the MMR-SOEC integrated plant."

USNC's MMR is a 15 MW thermal, 5 MW electrical high-temperature gas-cooled reactor, drawing on operational experience from reactors developed by China, Germany, Japan and the USA. It consists of two plants: the nuclear plant that generates heat, and the adjacent power plant that converts heat into electricity or provides process heat for industrial applications. The USNC system is designed to be simple, with minimal operation and maintenance requirements, and no on-site fuel storage, handling or processing. The MMR uses TRISO fuel in prismatic graphite blocks and has a sealed transportable core.

The MMR is at an advanced licensing stage at the Atomic Energy of Canada Limited's Chalk River Laboratories campus in Ontario. The project is a collaboration between USNC and Ontario Power Generation through the jointly owned Global First Power Limited Partnership.
https://www.world-nuclear-news.org/Arti ... hydrogen-p

Avatar de l’utilisateur
energy_isere
Modérateur
Modérateur
Messages : 89530
Inscription : 24 avr. 2005, 21:26
Localisation : Les JO de 68, c'était la
Contact :

Re: Des petits réacteurs nucléaires pour la production d'hydrogéne

Message par energy_isere » 30 avr. 2023, 16:12

L'hydrogène nucléaire américain vendu à prix dérisoire ?

22.04.2023 JEAN-LUC PONCIN h2-mobile

La banque française Lazard estime que les crédits d'impôts, prévus dans le cadre de la loi américaine sur la réduction de l'inflation (IRA), permettront aux électrolyseurs alimentés par l’atome de fournir de l'hydrogène à un prix inférieur à celui de l'hydrogène vert.

Si l’on évoque fréquemment l’hydrogène bleu, vert ou gris, on cite rarement l’hydrogène rose, produit grâce à l’alimentation d’un électrolyseur par de l’électricité d’origine nucléaire. Non pas que cela ne recouvre pas une réalité économique forte, mais parce que, pour l’instant, si des projets sont à l’étude, peu sont entrés en phase opérationnelle (à la différence des autres modes de production de l’hydrogène).

Du côté de l’Union Européenne, le débat sur la qualification du nucléaire comme énergie renouvelable (et donc de l’hydrogène rose en hydrogène vert) a retardé la mise en route des gros projets, notamment portés par EDF.

Néanmoins, la récente analyse publiée par Lazard, qui met en lumière que les électrolyseurs alimentés par le nucléaire pourraient fournir de l'hydrogène à un prix plus avantageux aux États-Unis que celui de l'hydrogène vert, a bousculé les européens.

La compétitivité de l’hydrogène rose américain n’est toutefois pas liée au mode de production mais davantage aux larges subventions distribuées par le gouvernement dans le cadre de l’IRA (Inflation Reduction Act). La banque Lazard estime ainsi que le coût nivelé de l’hydrogène (LCOH) rose aux États-Unis, obtenu en intégrant les subventions, serait tout juste inférieur à 0,5 euro du kilogramme, alors que celui de l’hydrogène vert avoisine les 0,8 euro du kilogramme.

Une usine d'hydrogène rose pourrait produire environ 63 % de plus que son homologue vert

Les calculs ont été effectués, dans les deux cas, sur la base d’un électrolyseur de 100 MW et l’écart de prix résulte du niveau de subvention d’une part, mais aussi de facteurs de capacité des usines très différents : 55 % pour les installations d'hydrogène vert contre 95 % pour les usines d'hydrogène rose, et ce, en raison du profil d'énergie de base stable de l'énergie nucléaire par rapport à l'alimentation variable et intermittente des énergies renouvelables. Cela signifie qu'une usine d'hydrogène rose pourrait produire environ 63 % d'hydrogène en plus par kWh installé de capacité d'électrolyse qu'une installation d'hydrogène vert, selon la modélisation de Lazard.

Sans modèle subventionné, le LCOH de l'hydrogène rose serait compris entre 2,50 et 5 €/kg, en fonction de la taille de l’électrolyseur (entre 20 et 100 MW) et de la technologie utilisée, et entre 3,20 et 7 €/kg pour l'hydrogène vert. A ce jour, seul l’hydrogène gris, non subventionné, est produit à un prix inférieur à 1 € /kg.
https://www.h2-mobile.fr/actus/hydrogen ... uro-kilos/

Répondre